Rangkaian Elektronika Sensor Cahaya


Pada rangkaian sensor cahaya ini menggunakan relay untuk pensaklaran tegangan AC PLN 220 volt. Beban yang ingin dikendalikan tidak hanya sebatas lampu saja tetapi bisa digunakan beban lain sesuai kebutuhannya. Yang pasti dengan cara pensaklaran relay diatas beban yang dikeandalikan adalah beban dengan tegangan supply 220 V. Rangkaian diatas merupakan rangkaian sensor cahaya yang sederhana dan sering ditemui, karena memang menurut saya rangkaian sensor cahaya bisa berkerja dengan penggunaan kompenen yang relatif sedikit dan rangkaian yang sederhana.

Rangkaian sensor diatas menggunakan LDR sebagai alat perasa perubahan intensitas cahaya. LDR (Light Dependent Resistor) adalah komponen elektronika yang pada dasarnya mempunyai sifat yang sama dengan resistor, hanya saja nilai resistansi dari LDR berubah-ubah sesuai dengan tingkat intensitas cahaya yang diterimanya. Rangkaian diatas bisa digunakan untuk pengaktifan lampu taman. Pada saat hari mulai malam maka lampu tersebut akan menyala otomatis layaknya lampu taman. Pengaturan kepekaan dari sensor digunakan potensio VR1 100 K. Adapun komponen yang diperlukan sbb :

    1. LDR
    2. Q1 : Transistor BC107 atau BC 547
    3. VR1 : Potensio 100 Kohm
    4. RL1 : Relay 9 Volt
    5. R1 : 1 KiloOhm
    6. R2 : 47 Kiloohm
    7. BL1 : Lampu taman

    Prinsip kerja dari rangkaian sensor cahaya diatas sebenarya sangat sederhana. Pembagian tegangan antara VR1 dan LDR merupakan inti dari rangkaian sensor cahaya diatas. Kenaikan tegangan pada VR1 akan mengurangi tegangan yang jatuh pada LDR, begitupun sebaliknya kenaikan tegangan pada LDR akan mengurangi tegangan jatuh pada VR1. Pembagian tegangan sesuai dengan rumus pembagi tegangan yang berlaku pada rangkaian seri, tegangan supply 9 volt sama dengan jumlah tegangan pada R1, VR1 dan LDR. VR1 digunakan untuk memposisikan tegangan pada LDR supaya berada pada titik kritis dan tidak sampai membuat transistor Q1 menjadi aktif. Sehingga pada saat kedaan cahaya semakin gelap tegangan pada LDR akan membuat transistor Q1 menjadi aktif. Hal ini dikarenakan nilai resistansi LDR akan naik apabila intensitas cahaya semakin gelap. Jika kita ingin membuat rangkaian sensor yang aktif pada saat cahaya semakin terang maka kita tinggal menukar posisi antara LDR dengan potensio VR1. Untuk prinsip kerjanya pada dasarnya sama dengan rangkaian sensor cahaya aktif gelap diatas. Kesemua rangkaian memanfaatkan hukum pembagi tegangan atau pengaturan arus ke basis transistor yang digunakan sebagai saklar.

    Sebagai catatan anda bahwa sensor cahaya yang menggunakan LDR sebagai komponen peng-indra atau perasa mempunyai respon yang relatif lambat. Sehingga jika anda ingin membangun rangkaian yang mempunyai respon yang cepat seperti untuk penghitungan pada rangkaian counter maka LDR tidak cocok untuk digunakan. Mungkin anda bisa memanfaatkan sensor infra merah atau komponen sensor yang lain. Cahaya infra merah bisa anda dapatkan dengan membuat rangkaian pemancar infra merah yang terdiri dari led infra merah yang berfungsi sebagai pengahasil cahaya infra merahnya. 

    Rangkaian Sensor Suara



    Rangkaian di atas memanfaatkan mikrofon sebagai alat pengubah suara menjadi gelombang listrik. Gelombang listrik yang dihasilkan oleh mikrofon sangat kecil sekali dan berbentuk bolak balik atau sinus. Gelombang listrik sinus ini kemudian diloloskan melalui kapasitor C3 untuk kemudian diperkuat oleh rangkaian penguat darlington yang terdiri dari transistor Q1 dan Q2. Kolektor dari transistor Q2 langsung dikopel dengan input pemicu rangkaian monostable. Rangkaian monostable tersebut akan menghasilkan output yang positif jika pada bagian triggernya (pin 2) berubah dari logika 1 ke 0. Jika kita amati pada saat rangkaian sensor tanpa sinyal input maka kolektor-emitor transistor Q2 akan seperti saklar terbuka (kondisi cut-off), dengan kata lain idealnya tegangan pada kolektor akan sebesar tegangan supply. Tapi karena kolektor tersebut paralele dengan input IC 555 maka bisa saya pastikan tegangan pada kolektor akan berkurang pengaruh hubungan parallel keduanya. Tetapi dengan demikian tegangan kolektor akan memberikan kondisi tinggi pada input monostable (pin 2). Pada saat sinyal suara dari input sensor membuat transistor Q2 jenuh maka hubungan antara kolektor dan emitor idealnya bagai seutas kawat, sehingga tegangan pada kolektor akan 0 volt. Dengan begitu rangkaian monostable akan terpicu dan mengaktifkan rangkaian output (pin 3) selama waktu yang ditentukan oleh R1 dan C!. Jika anda ingin mengkondiskan lebih lama, anda cukup memperbesar nilai dari R1 dan atau C1.

    DAFTAR KOMPONEN :
    1. IC 555
    2. Transistor : Q1,Q2 dan Q3 semuanya BC 541
    3. Resistor : R1 (100K), R2 (100K), R3 (10K), R4 (1K), R5 (1K) dan potensio VR1 (100K)
    4. Kapasitor : C1 (220 µF), C2 (0.01 µF) dan C3 (100 µF)
    5. Dioda : D1 (IN 4001)
    6. Relay 9 volt
    7. Mikrofon
    8. Rangkaian alarm (sesuai selera)

    Jika rangkaian yang anda buat tidak sensitif atau terlalu sangat sensiti, cobalah anda bereksperimen dengan menganti nilai R2 dan R5 serta VR1 dan R3 jika dibutuhkan. Yang penting yang anda harus pahami adalah bagaimana supaya memposisikan tegangan pada kolektor Q2 tidak sampai langsung berlogika rendah dan pada titik kritis sesuai dengan yang anda harapkan. Jika rangkaian telah bekerja dengan baik, cobalah anda lakukan analisa pada jenis-jenis suara yang bisa anda ciptakan seperti suara pelan, keras, melengking, efek bass.dan lain sebagainya.

    Rangkaian Flip Flop Sederhana

    Gambar diatas merupakan rangkaian elektonika flip-flop sederhana.
    Dalam rangkaian diatas membutuhkan komponen elektronika antara lain :
    1. Dua buah resistor dengan nilai 470 Ohm. Warna : Kuning, Ungu, Coklat.
    2. Dua buah resistor dengan nilai 22 Kilo Ohm. Warna : Merah, Merah, Orange.
    3. Dua buah Elektrolit Capasitor dengan nilai 22 mikrofarad (dapat menggunakan elco dengan kapasitansi/nilai yang berbeda untuk menyesuaikan kecepatan pergantian nyala LED).
    4. Dua buah LED.
    5. Dua buah transistor S9013/S9014.
    6. Sumber daya DC 9 Volt.

    Gerbang Logika Dasar


    Gerbang logika merupakan dasar pembentukan sistem digital. Gerbang logika beroperasi dengan bilangan biner, sehingga disebut juga gerbang logika biner. Tegangan yang digunakan dalam gerbang logika adalah TINGGI atau RENDAH. Tegangan tinggi berarti 1, sedangkan tegangan rendah berarti 0.

    Gerbang AND

    Gerbang AND digunakan untuk menghasilkan logika 1 jika semua masukan mempunyai logika 1, jika  tidak maka akan dihasilkan logika 0.



    Gerbang NAND (Not AND)


    Gerbang NAND akan mempunyai keluaran 0 bila semua masukan pada logika 1. sebaliknya jika ada sebuah logika 0 pada sembarang masukan pada gerbang NAND, maka keluaran akan bernilai 1.



    Gerbang OR


    Gerbang OR akan memberikan keluaran 1 jika salah satu dari masukannya pada keadaan 1. jika diinginkan keluaran bernilai 0, maka semua masukan harus dalam keadaan 0.




    Gerbang NOR (Not OR)

    Gerbang NOR akan memberikan keluaran 0 jika salah satu dari masukannya pada keadaan 1. jika diinginkan keluaran bernilai 1, maka semua masukannya harus dalam keadaan 0.




    Gerbang XOR

    Gerbang XOR (dari kata exclusive OR) akan memberikan keluaran 1 jika masukanmasukannya 
    mempunyai keadaan yang berbeda.




    Gerbang NOT

    Gerbang NOT adalah gerbang yang mempunyai sebuah input dan sebuah output. Gerbang NOT berfungsi sebagai pembalik (inverter), sehingga output dari gerbang ini merupakan kebalikan dari inputnya.